## IEE Solar Combi ${ }^{+}$ WP3 - Virtual Case Studies

## Edo Wiemken, Björn Nienborg

Fraunhofer Institute for Solar Energy Systems ISE

Kick-off meeting September 27-28, 2007
Bolzano, Italy

## Subtasks of WP3

- 3.1 Preparation of system implementation in simulation tools
- 3.2 Definition of applications (3-5) and locations to be studied
- 3.3 Determination of loads for the applications and locations
- 3.4 Determination of possible system configurations and control strategies


## Subtasks of WP3

- 3.5 Simulation study (variation: load files, sizes and component characteristics)
- 3.6 Energy-related evaluation of case studies and comparison with reference systems
- 3.7 Economic-related evaluation of case studies and comparison with reference systems


## Systems in Solar Combi+



Fraunhofer ${ }_{\text {Institut }}$

## Example: Economic study in 'Solar Air-Conditioning in

Europe (SACE)‘ Eu project, completed in 2003 www.cop.tudelftrnlevires/sace..htm

- Model buildings, defined in IEA Task 25
- Hotel
- Office
- Lecture Room
- Annual heating and cooling load profiles (time series with hourly data) for five European sites
- Madrid
- Athens
- Palermo
- Perpignan
- Freiburg

Example: summer day load and radiation profile (lecture room, Palermo site)

## SACE: approach (closed cycle systems)



+ Reference calculation of a conventional system for each site and application

Slide 6

Fraunhofer
Institut
Solare Energiesysteme

## SACE: approach

- Identification of most promising system size and configuration with respect to comparative primary energy savings (compared to the reference system); considering of complete energy balance (including pumps, fans, etc.)
- Cost figures
> initial cost: complete investment for the entire system including cost for planning
> complete annual cost: capital cost (annuity method) + operation cost based on annual energy balance + maintenance cost
> "cost of saved primary energy" by comparison with a reference system

$$
\text { cost of savedPE }=\frac{\text { extra annual cost of solar assisted system }}{\text { annual primary energy saving }}\left[€ / \mathrm{kWh}_{\mathrm{PE}}\right]
$$

## SACE design tool with predefined configurations



## SACE Pre-design tool; example



## SACE Pre-design tool; example

- office building
- flat plate collector
- back-up: boiler absorption chiller


Slide 10

Fraunhofer
Institut
Solare Energiesysteme

## SACE study: results (office building)

- Conditions:
primary energy
saving > 25\%; annual net collector efficiency > 20\%

| SITE | Collector type | Collector area per kW chiller | Heat storage size | Net collector efficiency | Chiller | Backup type | Annual cost of solar assisted cooling system | Primary energy saving | Cost of saved primary energy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Office at |  | $\mathrm{m}^{2} / \mathrm{kW}$ | hours | \% |  |  | \% of reference | \% | Euro-cent per kWh |
| MADRID | CPC | 3.3 | 4.2 | 21 | ABS | heat | 157 | 51 | 13.9 |
| ATHENS | CPC | 2.4 | 3.6 | 21 | ABS | el. compr. | 180 | 45 | 27.6 |
| PALERMO | CPC | 1.4 | 2.1 | 22 | ABS | el. compr. | 165 | 45 | 23.6 |
| PERPIGNAN | ETC1 | 1.7 | 2.8 | 30 | ABS | el. compr. | 192 | 45 | 32.6 |
| FREIBURG | ETC1 | 3.4 | 3.2 | 28 | ABS | el. compr. | 181 | 30 | 30.4 |



## Experiences from design studies

■ The specific combined energy-cost-performance parameter 'cost per saved primary energy unit' supports the sizing and configuration of a solar assisted air-conditioning system

- Size and type of the collector and storage volume depends strongly on the site conditions, load structure and applied air-conditioning technology.
A software tool is useful in the design of the system
- For thermal operated cooling processes with low COP and use of fossil fuels (heat back-up), a high percentage of solar thermal coverage is required in order to achieve savings in primary energy and $\mathrm{CO}_{2}$ emmissions. Alternative: electrically driven compression chiller as cold side backup ('fuelsaving، operation of solar thermal driven system) $\Rightarrow$ more adequate for large systems
- In most cases solar assisted cooling is today not economically viable without funding, but shows a large potential in primary energy saving


## Experiences from design studies

■ Most effective in primary energy saving are systems with solar autonomous cooling operation. But comfort room air-states may not be guaranteed for all hours in this application.
$\Rightarrow$ favourable in buildings with dominating external loads and usage during day hours

- The exploitation of the solar thermal system should be maximised, using the system for space heating support and DHW as well (promising perspective for small scale applications)

In Solar Comi':

- more precision on modelling, configurations, control
- actual performance and cost figures
- applications based on market analysis

Solar Combi+, Work package 3
(month 3-13)


Fraunhofer Institut

## Subtask 3.1 <br> Preparation of system implementation in simulation tools

■ Software tool: TRNSYS
■ Types: standard or nonstandard for collectors, storages,..

■ Chiller types:

- capacities
- ‘generic‘ model (scaling) or specific models
- on base of characteristics, NO research on component models



## Subtask 3.2 <br> Definition of applications and locations to be studied

- Applications:
- residential
- commercial (small offices)
- small hotels
- ...
$\Rightarrow$ input from WP2, SOLCO, ..
■ Sites:
- consortium partner countries ?
- meteorological data source?
$\Rightarrow$ Input from ECOHEATCOOL,..


## Subtask 3.3

Determination of loads / building simulation

■ Building standards
■ Internal laods
■ Heating / cooling / ventilation

- For each site and application: annual time series of sensible and latent heating / cooling loads



## Subtask 3.4

Determination of system configurations

- Input from WP2 Market analysis

■ Input from partners: configuration of marketed systems
■ Advantages / disadvantages from realised systems

- Input to heating support and domestic hot water preparation configurations:
IEA Tasks (e.g., Task 26 Solar Combisystems)



## Subtask 3.5 <br> Simulation study

■ Large number of simulations according to:

- sites
- applications
- configurations
- components sizes
- control strategies
- Annual simulations runs to cover heating/cooling period

■ Data base containing useful results


## Subtask 3.6, 3.7 <br> Energy-related and economic evaluation of results

- Definition of appropriate energetic/economic evaluation numbers

■ Reference calculations with non-renewable energy supply, e.g., electrically driven compression chillers for cooling

■ Identification of most promising system configurations for each application/site
■ $\Rightarrow$ Input to online accessible data base

## Subtask 3

## Virtual case studies

## Deliverables:

■ D3.1
Database with case studies: description and results
month 13
■ D3.2
Report with description of methodology
month 13
■ D3.3
Report on results
month 13

Solar Combi+, Work package 3
(month 3-13)


Fraunhofer ${ }_{\text {Institut }}$

## Subtask 3.1 <br> Preparation of system implementation in simulation tools

■ Software tool: TRNSYS

- Types:
standard or nonstandard for collectors, storages,..

■ Chiller types:

- capacities
- 'generic' model (scaling) or specific models
- on base of characteristics, NO research on component models



## Subtask 3.1 <br> Preparation of system implementation in simulation tools

■ Types: standard or non-standard for collectors, storages,..

- Chiller:
- which capacity?
- representing chiller models of manufacturers in SolarCombi+ Consortium?
- or: representing a 'general' chiller type; variations on driving temperature, heat rejection temperature, chilled water temperature, nominal COP,...
- model on base of steady state characteristics


## Subtask 3.1

Preparation of system implementation in simulation tools

- To be defined: uniform input/output structure



## Subtask 3.1

Preparation of system implementation in simulation tools
■ Available model from IEA Task 25: absorption chiller model, developed by J. Albers, TU Berlin. Parameter sets available:

- Yazaki WFC10 (with bubble pump),
- EAW Wegracal SE 15 (15kW)
- special .exe for Suninverse (10kW); no source code
- parameters for other machines may be extracted from appropritate data sheets
- Available model from IEA Task 25: adsorption chiller model, developed by Fraunhofer ISE. Parameters available:
- Nishiyodo / Mayekawa chiller; > 50 kW
- parameters for other machines may be extracted from appropriate data sheets

■ Climatewell?

## Subtask 3.1

Preparation of system implementation in simulation tools
■ In general: coupled system / building simulation?
(TRNSYS building model and system description in one simulation deck file)

+ allows solar autonomous cooling operation
(feedback to building type) $\Rightarrow$ more flexibility
- more stability problems with simulation, more complexity, remarkable inrease in running time
- compromise: separate load files and statistics of hours with auxiliary energy demand for cooling



## Subtask 3.1 <br> Preparation of system implementation in simulation tools

## NEXT STEPS:

- Chiller models:
characteristics, models (manufacturers)
- ROTARTICA, CW, SorTech, SK, SOLution?

■ Type of collectors, storages,.. Considered:

- ISE, AEE INTEC, EURAC, CRES, TECSOL, UNIBG,..?

■ General arrangements on TRNSYS decks:
(solar autonomous or not, version, ...)

- ISE, AEE INTEC, EURAC, CRES, TECSOL, UNIBG,..?


## Subtask 3.2 <br> Definition of applications and locations to be studied

■ Maximum cooling loads?

- Applications:
- residential
- commercial (small offices)
- small hotels
$\Rightarrow$ input from WP2, SOLCO, ..
- Sites:
- consortium partner countries ?
- meteorological data source?
$\Rightarrow$ Input from ECOHEATCOOL,..


## Subtask 3.2 <br> Definition of applications and locations to be studied

## NEXT STEPS:

■ Selection of applications:

- ...?

■ Selection of sites, preparation of meteorological data files:

- ...?


## Subtask 3.3

Determination of loads / building simulation



## Subtask 3.3

Determination of loads / building simulation

■ TRNSYS / PREBID?
$\Rightarrow$ depends on decison on coupled or seperate building / system simulation

- Generation of load data files



## Subtask 3.3 <br> Determination of loads / building simulation

■ Definition of building standards:

- on base of present building standards
- on base of national / European directives for new / refurbished buildings

■ Definition of typical buildings for the defined applications (3.2)

- Definition of internal loads, equipment, ventilation,..


## Subtask 3.3 <br> Determination of loads / building simulation

## NEXT STEPS:

■ Building standards:

- EURAC, CRES, ISE, AEE-INTEC, UNIBG, TECSOL?

■ Definition of typical buildings shells, internal loads,...:

- EURAC, CRES, ISE, AEE-INTEC, UNIBG, TECSOL?
- Calculation and Preparation of annually load files?
- ...?


## Subtask 3.4 <br> Determination of system configurations



Fraunhofer ${ }_{\text {Institut }}$

## Subtask 3.4

Determination of system configurations

- Input from WP2 Market analysis

■ Input from partners: configuration of marketed systems

- Advantages / disadvantages from realised systems
- Input to heating support and domestic hot water preparation configurations:
IEA Tasks (e.g., Task 26 Solar Combisystems)



## Subtask 3.4 <br> Determination of system configurations

- Collector:
- type of collector, fluid
- heat exchanger (no/external/in storage)
- pumps: controlled/fix speed
- Storages:
- hot side / cold side / additional storages (DHW,..)
- additional buffer for adsorption chillers

■ Heat rejection: wet / closed / dry /ground
■ Auxiliary sources: CHP / gas boiler / compression chiller
$\qquad$

## Subtask 3.4 <br> Determination of system configurations

■ Pre-selection of appropriate configurations:

- which configuration for which climate?
- which chiller type for which application?
- which collector for which chiller?
- which heat rejection system for which configuration?


## Subtask 3.5 <br> Simulation study

■ Large number of simulations according to:

- sites
- applications
- configurations
- components sizes
- control strategies
- Annual simulations runs to cover heating/cooling period

■ Data base containing useful results


## Subtask 3.6, 3.7 <br> Energy-related and economic evaluation of results

- Definition of appropriate energetic/economic evaluation numbers

■ Reference calculations with non-renewable energy supply, e.g., electrically driven compression chillers for cooling

■ Identification of most promising system configurations for each application/site
■ $\Rightarrow$ Input to online accessible data base

## Subtask 3

## Virtual case studies

## Deliverables:

■ D3.1
Database with case studies: description and results
month 13
■ D3.2
Report with description of methodology
month 13
■ D3.3
Report on results
month 13

