IEE Solar Combi⁺ WP3 – Virtual Case Studies

Edo Wiemken, Björn Nienborg

Fraunhofer Institute for Solar Energy Systems ISE

2nd project meeting February 21-22, 2008 Bilbao, Spain

Subtasks of WP3

- 3.1 Preparation of system implementation in simulation tools
- 3.2 Definition of applications (3-5) and locations to be studied
- 3.3 Determination of loads for the applications and locations
- 3.4 Determination of possible system configurations and control strategies

Subtasks of WP3

- 3.5 Simulation study (variation: load files, sizes and component characteristics)
- 3.6 Energy-related evaluation of case studies and comparison with reference systems
- 3.7 Economic-related evaluation of case studies and comparison with reference systems

3.2: Definition of applications and locations

- I. Office building cold distribution system: fan coils, supply air cooling (7℃/12℃)
- II. Residential building cold distribution system: fan coils (7°C/12/°C)
- III. Residential building cold distribution system: chilled ceilings, etc. (15℃/20℃)
- Building standard: according to climatic zones of Ecoheatcool?

3.2: Definition of applications and locations

Fraunhofer Institut Solare Energiesysteme

Ecoheatcool: Heating degree days

Ecoheatcool: European heating index EHI

Ecoheatcool: European cooling index ECI

- Method:
 - Outdoor temperature predominates heating and cooling demand
 - heating demand predominates building insulation
 - Definition of cooling degree days:

if $T_{outdoor}$ < 29 °C: T_{indoor} = 22 °C else: (T_{indoor} = $T_{outdoor}$ − 7 °C) \Rightarrow

EHI: \propto (c_degree_days)^{1/2},

normalised to av. European cooling conditions (Strasbourg,..) (av. outdoor temp. approx. 10 ℃)

ISE

Solare Energiesysteme

Fraunhofer Institut

- Average space cooling demand proportional to ECI
- Humidity control <u>not</u> considered

Source: Ecoheatcool / WP2: European cold market

Climatic zones in Solar Combi+

3 climatic zones

Suggestion for EHI / ECI: 100 / 100 (Strasbourg) 90 / 120 (South of France, North of Italy) 70 / 140 (South of Spain and Italy)

Northern European ares: below economic reasonable operation time of cooling system?

3.3: Determination of loads

Base load files for heating / cooling / DHW generated with x types of buildings (applications) for

y climate zones

(no. Of base laod files: x*y)

Problem: Building models with fixed geometry

With different chiller types (4.5 kW – 15 kW) different solar coverage of heating/cooling demand with base load files

 \Rightarrow difficult to interprete

Solution

 \Rightarrow load file scaling procedure

Fraunhofer Institut Solare Energiesysteme

Configuration

3.3: Determination of loads

Ecoheatcool: domestic hot water consumption

Source: Ecoheatcool / WP1: European heat market

water

capity

50 l/day per

Fraunhofer Institut Solare Energiesysteme

Structure of load files

- Example: 3 applications, 3 climate zones, 5 different chiller applications
 ⇒ 45 scaled load files
- Load file combines heating / cooling / DHW loads with meteorological data
- Time resolution of data: one hour; length: one year

Hour of the year	Month	Day	Hour	T _{amb}	rH _{amb}	T _{room,set}	rH _{room,set}	P _{heating,sensible}	P _{heating,latent}	
hh	mm	dd	hh	°C	%	°C	%	kW	kW	
1	1	1	1	••	••					
2	1	1	2	••						
3										

 P _{cooling,sensible}	P _{cooling,latent}	T _{DHW}	V _{DHW}	G _{horizontal}	G _{diffus}	
 kW	kW	°C	m³/h	W/m²	W/m²	
 ••	••					

Fraunhofer Institut Solare Energiesysteme

Small size chillers to be considered

Chiller model	Manufacturer	Rated chilling capacity	Rated chilled water temperature*	heat rejection mode at rated conditions		
		[kW]	[°C]			
Solar 7	Rotartica	4.5	7/12°C	Dry cooling		
ACS 05	SorTech	5.5 *	15/18°C	Wet cooling (dry cooling possible)		
ClimateWell 10	ClimateWell	10	17/?°C	Wet cooling (dry cooling possible)		
Suninverse Sonnenklima		10	15/18°C	Wet cooling (dry cooling possible)		
Wegracal SE 15	EAW	15	11/17°C	Wet cooling		

* SorTech: replaced by new chiller with 7.5 kW capacity (spring 2008)

Fraunhofer _{Institut} Solare Energiesysteme

Standard configuration

- No bypass of solar hot water storage (avoiding control problems, simplifying hydraulic)
- Either solar thermal operation <u>or</u> fossil fueled operation of chiller
- No return temperature lift of solar heat by fossil fueled boiler (avoiding fossil heating of solar storage and decrease of collector utilisation)
- Solar heat storage: with or without stratification charging unit? Will be considered in TRNSYS simulations, but the effect is probably small due to small temperature differences and high mass flow rates
- External solar heat exchanger: gives more flexibility in storage (normally larger than for pure solar combi systems
- Chilled water storage; size to be determined (hydraulic junction or real cold storage effect)
- Input from WP2

Fraunhofer Institut Solare Energiesysteme

3.5: simulation study

- Example: 3 applications, 3 climate zones, 5 different chiller applications
 ⇒ 45 scaled load files
- 2 collectors, 5 collector sizes, 2 storage sizes, 2 heat rejection systems
 - \Rightarrow 1800 simulations (without reference calculations)
 - Shared with partners

...

	Climate_1											
	Office				Residential_1				Residential_2			
config. S1	FPC		ETC		FPC		ETC		FPC		ETC	
config. S2	HR _{wet}	HR _{dry}	HR _{wet}	HR _{dry}	HR _{wet}	HR_{dry}	HR _{wet}	HR _{dry}	HR _{wet}	HR _{dry}	HR _{wet}	HR_{dry}
chiller_1	dim	dim										
chiller_2	dim											
chiller_3												
chiller_4												
chiller_5												
reference												
	Climate_2											
	Office				Residential_1			Residential_2				
•••												

Fraunhofer Institut Solare Energiesysteme

3.1: preparation of system implementation in simulation tools

- No coupled building / system simulation
- Standard TRNSYS types as far as possible
- Chiller types: models or data files from manufacturer / distributor; received:
 - TRNSYS 16 type for ClimateWell chiller
 - TRNSYS 15 type for Sonnenklima (no source code, not transferable)
 - Data set of SorTech 5.5 kW chiller
- Further system implementation is connected with WP 3.4

Fraunhofer Institut Solare Energiesysteme

3.6, 3.7: energetic and economic evaluation

- Comprehensive annual energy balance
- Comparison on base of reference system simulation results
- Collector efficiency, collector yield, Primary energy savings, ...
- On base of user input: cost figures
- Statistics: hours with additional auxiliary energy demand for cooling

ISE

Fraunhofer Institut

- Applications:
 - building definition and modelling
- Selection of sites:
 - choice of climatic zones
- Calculation of base load files
- Agreement on system configurations
- Chiller models: support from supplier
- TRNSYS models of chillers and control; test of models

Fraunhofer Institut Solare Energiesysteme

- Setup of TRNSYS decks:
 - standard types (collector, storages,..)
 - types or models for heat rejection
 - configurations (separate for each chiller model) and basic stability tests
 - programm output file structure definition
- Scaling of load files with standard configuration
- Definition of sizing range (collector, storage)
- Simulation runs
- Post-processing of results:
 - monthly / annual evaluation numbers
 - data table

Fraunhofer Institut Solare Energiesysteme

Applications: building definition and modelling end of March 08 Definition of applications support: EURAC, AEE-INTEC

Building models (geometry, size, description,..) review: Task 32 (26)

Selection of sites

end 03/08 according to ECOHEATCOOL or other approaches support: EURAC

Calculation of Base Load files

end of 04/08 meteorological data

Building simulation ISE

ISE

Fraunhofer _{Institut} Solare Energiesysteme

Agreement on system configurations

defined: end 03/08

selection of configurations ISE, TECSOL, commercial partners

technical details (pumps, pipes, insulation, ..) ISE, commercial partners

TRNSYS decks with system configurations ISE, support: Uni Bergamo

Fraunhofer Institut Solare Energiesysteme

Chiller models

data / models, control strategy ISE, commercial partners

generic model (on base of EAW characteristics?) yes

TRNSYS models of chillers, tests ISE

Fraunhofer Institut Solare Energiesysteme

Setup of TRNSYS decks

- standard collector types
- selection of collector parameters
- possible: check of selected configuration with capacitance collector model (non-standard TRNSYS type)

ISE, support: Uni Bergamo

Fraunhofer Institut Solare Energiesysteme

Setup of TRNSYS decks

- selection of storage type (depending also from configuration)
- no tank-in-tank storage model

Fraunhofer _{Institut} Solare Energiesysteme

Setup of TRNSYS decks

configurations, stability tests

program output file structure

Fraunhofer _{Institut} Solare Energiesysteme

 Scaling of load files (with standard configuration)

Sizing range

to be determined from test runs

Simulation runs

Fraunhofer Institut Solare Energiesysteme

Subtask 3 Virtual case studies

Deliverables:

D3.1

Database with case studies: description and results month 13

D3.2

Report with description of methodology month 13

D3.3

Report on results month 13

Fraunhofer _{Institut} Solare Energiesysteme

Slide 34

Subtask 3.1 Preparation of system implementation in simulation tools

- Available model from IEA Task 25: absorption chiller model, developed by J. Albers, TU Berlin. Parameter sets available:
 - Yazaki WFC10 (with bubble pump),
 - EAW Wegracal SE 15 (15kW)
 - special .exe for Suninverse (10kW); no source code
 - parameters for other machines may be extracted from appropritate data sheets
- Available model from IEA Task 25: adsorption chiller model, developed by Fraunhofer ISE. Parameters available:
 - Nishiyodo / Mayekawa chiller; > 50 kW
 - parameters for other machines may be extracted from appropriate data sheets
- Climatewell?

Fraunhofer Institut Solare Energiesysteme

Subtask 3.3 Determination of loads / building simulation

NEXT STEPS:

- Building standards:
 EURAC, CRES, ISE, AEE-INTEC, UNIBG, TECSOL?
- Definition of typical buildings shells, internal loads,...:
 EURAC, CRES, ISE, AEE-INTEC, UNIBG, TECSOL?
- Calculation and Preparation of annually load files?

- ...?

Fraunhofer Institut Solare Energiesysteme