IEE Solar Combi+ Virtual Case Studies

Latest Changes

Björn Nienborg, Lotta Koch, Edo Wiemken

4th Project Meeting , June 10th 2009 Perpignan, France

Content

- 1. Changes in Sortech-simulation
- 2. 4 Proposed changes / sensitivity analysis
- 3. Changes in performance figures / evaluation

1. Changes in Sortech simulation

- Sortech does not recommend to use their chiller with 12°C/10°C cool water temperatures
 - \rightarrow Reduction of Sortech-simulations (only chilled ceiling)

16 X 15 = 240 simulations

- Actualized chiller model (2009 edition of ACS08) with adapted control strategy
 - \rightarrow 2 modes: ECO (max. COP, reduced Power) for boiler operation POWER (max. Power, reduced COP) for solar op.
 - New control strategy for hybrid cooling tower
 - \rightarrow speed control of fan T_MT_set=f(T_HT_in,T_NT_in,Q_set)

2. Change 1: adapted hot side control

- Formerly chiller always ran at least with reference temperature (80°C); boiler provided reference temperature if solar system insufficient
- Adapted:
 - boiler provides reference temperature only if
 - a) temperature from solar below minimum driving temp.

Sortech + Sonnenklima:	65°C → dT=15K
Rotartica + ClimateWell:	70°C → dT=10K
EAW:	75°C → dT=5K

or

b) cooling load could not be covered in last time step

2. Change 1: adapted Boiler operation

Formerly the load file was scaled so the maximum cooling load could be met with the reference driving temperature of 80°C.

 \rightarrow higher driving temperatures lead to on/off – operation since the cold production exceeded the cold demand

Now:

- the load file is scaled to the chilling capacity of the respective chiller at 95°C

> Sortech + Sonnenklima: Rotartica + ClimateWell: EAW:

 $65^{\circ}C \rightarrow dT=30K$ $70^{\circ}C \rightarrow dT=25K$ $75^{\circ}C \rightarrow dT=20K$

2. Change 3: Increase of maximum storage temp.

- Formerly the storage could only be charged up to 91°C
- Now:

The maximum temperature is 95°C

2. Change 3: Increase of maximum storage temp.

2. Change 3: Increase of maximum storage temp.

2. Idea 4: Two load files for reduced stagnation

Proposal:

Combining two loadfiles to reduce stagnation time

-> Unsolved Question

- How to consider the additional cold (+ parasitic electricity, etc.) in the evaluation??

Comparison of stagnation time with different Set-temperatures for the officebuilding in Toulouse, Sortech, E, FC, ET, WC

3. Changes in performance figures

- Solar fraction System E
 - considering storage losses and losses in collector system
 - Electric efficiency cooling and heating in system E and C:
 - new factor for solar pump energy
 - Storage losses
 - direct TRNSYS output

-> Changed analysis macro!

E-SOR-TOU-CC-FP-HC-R60

E-SOR-TOU-CC-FP-HC-R60

E-SOR-TOU-CC-FP-HC-R60

100%

E-SOR-TOU-CC-FP-HC-R60

